

Kurzbericht zur umwelttechnischen Detailuntersuchung

Alte Mühle Flehingen

Gochsheimer Str. 101
75038 Oberderdingen-Flehingen

Projektnummer: 1154-2 29. Januar 2016

Projektbeschreibung	Umwelttechnische Detailuntersuchung
Auftraggeber	Barbara und Siegfried Krauth Gochsheimer Str. 101 75038 Oberderdingen
Ansprechpartner	Herr Siegfried Krauth 0170 - 287 39 97
Auftragsdatum	15.12.2015
Auftragnehmer	zwigl geoconsult Zeppelinstr. 2 76185 Karlsruhe
Ansprechpartner	Dipl. Geol. Judith Zwigl Tel.: +49 171 852 12 88 E-Mail: info@zwigl-geoconsult.com

Inhaltsverzeichnis Seite

Inha	altsverze	eichnis	3
Anl	agen		3
1.	•	s und Auftrag	
	1.1	Auftraggeber und Auftragsdatum	
	1.2	Aufgabenstellung / Hintergrund	
2	Stando	ortgegebenheiten	6
	2.1	Lokale Geologie / Hydrogeologie	
3	Rechtl	liche Vorgaben	
4		geführte Arbeitengeführte Arbeiten	
	4.1.1	Durchgeführte Feldarbeiten	
	4.1.2	Entnahme und Analyse von Bodenproben	
	4.1.3	Entnahme und Analyse von Bodenluftproben	
	4.1.4	Entnahme und Analyse einer Grundwasserprobe	
5	Analys	senergebnisse und Bewertung	
	5.1	Boden (Feststoff und Eluat)	
	5.2	Bodenluft	
	5.3	Grundwasser	10
6	Gefäh	rdungsabschätzung	11
	6.1	Wirkungspfad Boden – Mensch	11
	6.2	Wirkungspfad Boden – Grundwasser	
7	Handlı	ungsbedarf	12
8	Schlus	ssbemerkung	12

Anlagen

Anlage 1: Ergebnisplan

Anlage 2: Bohrprofile / Probenahmeprotokoll

Anlage 3: Prüfberichte

Anlage 4: Fotodokumentation

Abkürzungsverzeichnis

AKW Aromatische Kohlenwasserstoffe

BBodSchG Bundesbodenschutzgesetz

BBodSchV Bundesbodenschutzverordnung
BTEX Benzol, Toluol, Ethylbenzole, Xylol

EL Eluat
FS Feststoff

LRA Landratsamt

m u. GOK Meter unter Geländeoberkante

PAK Polyzyklische Aromatische Kohlenwasserstoffe

RKS Rammkernsondierung

TMB Trimethylbenzol

Literatur-/Quellenverzeichnis

<u>Vorschriften</u>

- /1/ Bundesbodenschutzgesetz, 17. März 1998, zuletzt geändert am 9. Dezember 2004.
- /2/ Bundesbodenschutz- und Altlastenverordnung, 12. Juli 1999, zuletzt geändert 23.12.2004.
- /3/ Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Untersuchungsstrategie Grundwasser Leitfaden zur Untersuchung bei belasteten Standorten. 1. Auflage, September 2008.
- /4/ Ständiger Ausschuss Altlasten der Bund/Länder-Arbeitsgemeinschaft Bodenschutz (LABO), Bewertungsgrundlagen für Schadstoffe in Altlasten - Informationsblatt für den Vollzug, 09.09.2004.
- /5/ Bericht zur umwelttechnischen Untersuchung Alte Mühle Flehingen, Gochsheimer Str. 101, 75038 Oberderdingen-Flehingen. zwigl geoconsult, Karlsruhe. 15.09.2015.

Standortinformationen

- /6/ Aktuelle Geländebeobachtungen August / Dezember 2015.
- /7/ Geologische Übersichtskarte von Baden-Württemberg 1:500.000, Landesamt für Geologie, Rohstoffe und Bergbau (LGRB), Freiburg i. Br. 1998.
- /8/ Auskunft aus dem Bodenschutz- und Altlastenkataster: Oberderdingen-Flehingen, Flst. Nr. 2980, 2980/1, 8343, 3069, 3067/2, Gochsheimer Str. 101 vom 20.07.2015.

1. Anlass und Auftrag

1.1 Auftraggeber und Auftragsdatum

Im Vorfeld einer geplanten Grundstücksübernahme wurde das Unternehmen zwigl geoconsult, Karlsruhe durch die Eheleute Barbara und Siegfried Krauth aus Oberderdingen-Flehingen mit der Durchführung einer umwelttechnischen Untersuchung des anstehenden Untergrundes auf dem Gelände des ehem. Mühlengeländes, Gochsheimer Str. 101 in Oberderdingen-Flehingen beauftragt.

Aufgrund, im Zuge der Durchführung genannter Arbeiten, angetroffener Untergrundverunreinigungen erfolgte am 15.12.2015 eine Nachbeauftragung zur Durchführung einer Detailuntersuchung.

Die Ausführung der im zweiten Schritt beauftragten Leistung vor Ort erfolgte am 21. Dezember 2015.

1.2 Aufgabenstellung / Hintergrund

Neben den auf dem Gelände z. T. flächig vorhandenen auffüllungstypischen Verunreinigungen durch PAK wurde im Bereich der RKS 13 (ehem. Hobelhalle) im Zuge der ersten Erkundungsphase im August 2015 zudem eine oberflächennahe AKW-Belastung festgestellt (AKW-Gehalt: max. 2,5 mg/kg). Die an dieser Probe durchgeführte Eluatuntersuchung zeigte keine Auffälligkeiten, auch unterlagernde Bodenproben waren analytisch unauffällig /5/.

In Abstimmung mit und gemäß dem Schreiben des Landratsamtes Karlsruhe vom 12. Oktober 2015 sollte der Bereich um den Erkundungspunkt RKS 13 zur Überprüfung der räumlichen Erstreckung der festgestellten Bodenverunreinigungen durch drei weitere Bohrungen genauer betrachtet werden. Bodenproben aus diesen Bohrungen sollten auf BTEX und PAK im Feststoff sowie im Eluat untersucht werden. Bei Erbohren von Grundwasser sollte das Wasser beprobt und auf die Verdachtsparameter BTEX und PAK untersucht werden. Um bei einer späteren Umnutzung auch den Wirkungspfad Boden-Mensch hinsichtlich flüchtiger Stoffe vollständig bewerten zu können, war eine Bodenluftmessung gefordert.

Folgende Tätigkeiten wurden im Zuge der Detailuntersuchung auf dem Gelände durchgeführt:

- Niederbringen von drei Rammkernsondierungen auf Tiefen von 2,0 bis max.
 6,0 m u. GOK im Nahbereich der RKS 13, Durchführung einer zusätzlichen RKS auf 3,0 m Tiefe zur weiteren Eingrenzung,
- geologische Aufnahme, sensorische Beurteilung und Beprobung der erbohrten Materialien,
- Ausbau einer Bohrung zur temporären Bodenluftmessstelle und Entnahme einer Bodenluftprobe aus dem Sondierloch durch Anreicherung auf Aktivkohle,

- Ausbau eines Sondierloches im Grundwasserabstrom zur temporären Grundwassermessstelle und Beprobung des Grundwassers,
- laborative Untersuchung ausgewählter Bodenproben auf PAK und AKW im Feststoff und Eluat, Untersuchung der Bodenluftprobe auf AKW sowie der Grundwasserprobe auf PAK und AKW,
- Dokumentation der durchgeführten Arbeiten und Bewertung der Ergebnisse in Form eines Kurzberichtes.

2 Standortgegebenheiten

2.1 Lokale Geologie / Hydrogeologie

Durch die im Dezember 2015 ausgeführten Bohrungen wurden im Liegenden anthropogener max. 0,9 m mächtiger Auffüllungen aus dunkel- bis schwarzbraunen Schluff-Sand-Kies-Gemischen bis max. 1,2 m Tiefe grau bis grüngraue tonige Schluffe angetroffen. Tiefer folgten graue schluffige Tone bis 5 m u. GOK sowie ab einer Tiefe von 5,0 bis mind. 6,0 m u. GOK wiederum tonige Schluffe.

Ein zusammenhängender Grundwasserleiter wurde nicht erbohrt. In den Bohrungen RKS 22 und RKS 23 wurde Schichtwasser angetroffen, das sich im Bohrloch sammelte und bis auf 1,35 m bzw. 1,43 m u. GOK anstieg.

3 Rechtliche Vorgaben

Im Folgenden sind die derzeit geltenden Rechtsvorschriften sowie für eine Bewertung relevante Stellungnahmen sachkundiger Gremien aufgeführt:

- Bundesbodenschutzgesetz (BBodSchG) /1/,
- Bundesbodenschutz- und Altlastenverordnung (BBodSchV) /2/,
- Untersuchungsstrategie Grundwasser Leitfaden zur Untersuchung bei belasteten Standorten, LUBW 2008 /3/,
- Bewertungsgrundlagen für Schadstoffe in Altlasten, Informationsblatt für den Vollzug Orientierende Hinweise für flüchtige Stoffe LABO, 01.09.2008 /4/.

4 Durchgeführte Arbeiten

4.1.1 Durchgeführte Feldarbeiten

Die Bohrarbeiten sowie die Probenahmen wurden am 21. Dezember 2015 durch die Fa. TERRAQ GmbH, Ölbronn-Dürrn ausgeführt. Im Zuge der Untersuchungen wurden insgesamt 4 Bohrungen auf Tiefen von 2,0 bis max. 6,0 m u. GOK niedergebracht. Außerdem wurden aus der Bohrung RKS 22 eine Wasserprobe und aus der Bohrung RKS 21 eine Bodenluftprobe entnommen.

Die Lage der Bohrpunkte ist in der Anlage 1a dargestellt, die graphische Darstellung in Bohrprofilen ist der Anlage 2 zu entnehmen.

4.1.2 Entnahme und Analyse von Bodenproben

Der mit Hilfe der Kleinbohrungen aufgeschlossene Untergrund wurde sedimentpetrographisch charakterisiert, sensorisch beurteilt und horizontiert beprobt. Dabei erfolgten die Probenahmen je laufenden Meter, bei Schichtwechsel oder bei sensorischen Auffälligkeiten. Das Probenmaterial wurde in 200 ml Braungläser sowie in 100 ml Gläser mit Methanol-Vorlage gefüllt und dem Labor zur Analyse bzw. zur Rückstellung übergeben.

Insgesamt wurden aus den durchgeführten Rammkernsondierungen 18 Bodenproben entnommen. Ausgewählte Bodenproben (8 Stück) wurden auf die Parameter AKW und/oder PAK analysiert.

Nachträglich wurde die Probe RKS 22 (0,3-0,9 m) aufgrund der identifizierten analytischen Auffälligkeiten im Feststoff zur Überprüfung der Eluierbarkeit der Schadstoffe noch auf die Parameter PAK und AKW im Eluat untersucht.

Die entnommenen Proben verbleiben für zwei Monate im Probenarchiv des Labors und werden anschließend ordnungsgemäß beseitigt. Die chemischen Untersuchungen erfolgten durch das Labor goertler analytical services, Vaterstetten. Die Prüfberichte gehen aus Anlage 3 hervor.

4.1.3 Entnahme und Analyse einer Bodenluftprobe

Die Sondierung RKS 21 wurde zur temporären Bodenluftmessstelle ausgebaut. Nach Austausch des Totvolumens wurde eine Bodenluftmenge von 2 I über ein Aktivkohle-Sorptionsröhrchen gesaugt und dort angereichert. Die Probe wurde durch das akkreditierte Labor goertler analytical services GmbH, Vaterstetten auf die Parametergruppe AKW analysiert.

4.1.4 Entnahme und Analyse einer Grundwasserprobe

Die im Grundwasserabstrom der RKS 13 liegende Sondierbohrung RKS 22 wurde zur temporären Grundwassermessstelle ausgebaut und das sich darin sammelnde Wasser beprobt. Die Entnahme der Wasserprobe erfolgte nach zweifachem Austausch des Pegelvolumens mittels mobiler Unterwasserpumpe (Probenahmeprotokoll siehe Anlage 2).

5 Analysenergebnisse und Bewertung

5.1 Boden (Feststoff und Eluat)

Der gewählte Untersuchungsumfang richtete sich nach den im Zuge der Geländearbeiten festgestellten sensorischen Auffälligkeiten.

Grundsätzlich wurde in allen vier Sondierungen oberflächennah ein aromatischer zur Tiefe hin deutlich abnehmender terpentinartiger Geruch festgestellt. Die sensorischen Auffälligkeiten, die Entnahmebereiche sowie die ermittelten Schadstoffgehalte der analysierten Einzelproben sind in der nachfolgenden Tabelle zusammengestellt.

Die Prüfberichte sind in Anlage 3 einzusehen. Die Lage der entnommenen Bodenproben geht aus der Anlage 1a hervor.

Tabelle 1: Analysenergebnisse der Bodenuntersuchungen

		Tiefe	Analysenergebnis [mg/kg] FS				
Probe	Sensorik	[m u. GOK]	PAK ²⁾ ohne Naphtha- lin	PAK mit Naphtha- lin	Ben- zo[a]pyren	AKW ³⁾	
RKS 13	A: U, t, g, s, x, Geruch nach Ter- pentin, braun bis schwarzgrau	0,1 – 0,8	3	25	0,08	2,5	
phase August 2015 /5/)	Schluff, tonig, Ge- ruch nach Ter- pentin	0,8 – 1,0	-	ł	-	0,011	
RKS 20	A: U, t, s, g, x dunkelbraun bis schwarzbraun, Geruch nach Ter- pentin	0,15 – 0,6	0,09	2,3	<0,01	0,026	
	Schluff, tonig grau – grüngrau, leichter Geruch nach Terpentin	0,6 – 1,10	0,03	0,03	<0,01	n.n.	
RKS 21	A: U, t, s, g, x dunkelbraun bis schwarzbraun, Geruch nach Ter- pentin	0,15 – 0,5	0,35	1,2	<0,01	0,087	
	Schluff, tonig grau – grüngrau, leichter Geruch nach Terpentin	0,5 – 1,0	0,15	0,61	<0,01	0,029	
	A: U, s, g grau – grüngrau, Geruch nach Ter- pentin	0,3 - 0,9	8	22	<0,01	0,630	
RKS 22	Schluff, tonig grau, leichter Ge- ruch nach Ter- pentin	0,9 – 1,2	0,35	19	<0,01		
	Ton, schluffig grau	2,0 - 3,0				n.n.	

		Tiefe	Analysenergebnis [mg/kg] FS				
Probe	Sensorik	[m u. GOK]	PAK ²⁾ ohne Naphtha- lin	PAK mit Naphtha- lin	Ben- zo[a]pyren	AKW ³⁾	
RKS 23	A: U, t, g, s, x, Geruch nach Ter- pentin, dunkel- braun bis schwarzbraun	0,15 - 0,7	0,2	4,2	<0,01	0,067	
	Schluff, tonig, leichter Geruch nach Terpentin	0,7 - 1,0	0,2	2,9	<0,01	0,053	

^{--:} nicht untersucht

n.n.: nicht nachweisbar

Die analytisch am höchsten belastete Bodenprobe RKS 22 (0,3-0,9 m) wurde in einem zweiten Schritt auf die Eluierbarkeit der Parameter AKW und PAK untersucht. Die Untersuchungsergebnisse sind in der nachfolgenden Tabelle aufgeführt.

Tabelle 2: Analysenergebnisse der Eluatuntersuchungen

Probe	Sensorik		Tiefe	Analysenergebnisse EL [μg/l]			
			[m u. GOK]	PAK _{ges.} Ohne Naph- thalin	Naphtha- lin	BTEX ¹⁾	Benzol
Laittadan Un	An was s	Hintergrundwert		0,05	0,05	< BG	< BG
Leitfaden Un chungsstrate	gie Prüfwert			0,2	2	20	1
Grundwasse	r /3/	GFS-Wer	t	0,2	n.d.	20	1
RKS 22	A: U, s, g		0,3 - 0,9	0,11	1,5	10,2	0,5

^{1):} Leichtflüchtige aromatische Kohlenwasserstoffe (Benzol, Toluol, Xylole, Ethylbenzol, Styrol, Cumol). Die TMB zählen nicht zu den BTEX und werden in der Bewertung nach /3/ ausgeklammert.

Die zur Eingrenzung durchgeführten Sondierungen zeigten weiterhin i. W. auffüllungsgebundene abfallrechtliche PAK-Verunreinigungen bis max. 1,2 m unter Gelände (ermittelter Maximalgehalt 22 mg/kg PAK). Unterlagernde Bodenproben weisen keine sensorischen und analytischen Auffälligkeiten hinsichtlich PAK auf.

^{1):} Benzol, Toluol, Styrol, Xylol

^{2):} PAK (PAK EPA ohne Naphthalin)

^{3):} Leichtflüchtige Aromatische Kohlenwasserstoffe (Benzol, Toluol, Xylole, Ethylbenzol, Styrol, Cumol etc.)

Die in Spuren analysierten AKW-Gehalte der Bohrungen RKS 20 bis RKS 23 schwanken zwischen 0,026 mg/kg und max. 0,630 mg/kg. Dabei wird der "wesentliche" AKW-Anteil, wie in der Erstuntersuchung im August 2015 auch, jeweils von Trimethylbenzolen (TMB) eingenommen. Trimethylbenzole finden u. a. als Lösemittel für Harze und Gummi Verwendung oder sie deuten auf ein deutlich abgebautes und somit älteres Benzinprodukt hin.

Die an der Probe RKS 22 (0,3-0,9 m) durchgeführten Eluatuntersuchungen lieferten in Bezug auf Anhang 2 des Leitfadens Untersuchungsstrategie Grundwasser /3/ Ergebnisse, die die jeweiligen Prüfwerte unterschreiten.

5.2 Bodenluft

Aus dem Sondierloch RKS 21 wurde aus einer Tiefe von 2,0 m u. GOK eine Bodenluftprobe entnommen und auf AKW untersucht. Aus der nachfolgenden Tabelle gehen die Ergebnisse hervor. Zur Beurteilung wurden die Orientierenden Hinweise für flüchtige Stoffe in der Bodenluft (LABO 2008 /4/) herangezogen.

Tabelle 3: Analysenergebnis der Bodenluftuntersuchung

	Analysenergebnis Bodenluft [mg/m³]								
Probe	Benzol	Ethylben- zol	Styrol	Toluol	1,3,5 Tri- methyl- benzol	Xylol			
Orientierende Hin- weise für flüchtige Stoffe in der Bo- denluft /4/	10	200	100	1.000	1.000	1.000			
RKS 21	1,5	<0,30	<0,30	<0,30	2,3	1,68			

Die in /4/ angegebenen Orientierungswerte für flüchtige Stoffe in der Bodenluft werden deutlich unterschritten.

5.3 Grundwasser

Die im Grundwasserabstrom der RKS 13 liegende Sondierbohrung RKS 22 wurde zur temporären Grundwassermessstelle ausgebaut und das sich darin sammelnde Wasser beprobt. Die Entnahme der Wasserprobe erfolgte nach zweifachem Austausch des Pegelvolumens mittels mobiler Unterwasserpumpe.

Tabelle 4: Analysenergebnisse der entnommenen Wasserproben

	Analysenergebnisse Wasserprobe [μg/l]					
Probe		PAK _{ges.} Ohne Naph- thalin	Naphtha- lin	BTEX ¹⁾	Benzol	
	Hintergrundwert	0,05	0,05	< BG	< BG	
Leitfaden Untersu- chungsstrategie Grundwasser /3/	Prüfwert	0,2	2	20	1	
Grundwasser /5/	GFS-Wert	0,2	n.d.	20	1	
RKS 22		0,16	1,1	4,2	0,7	

^{1):} Leichtflüchtige aromatische Kohlenwasserstoffe (Benzol, Toluol, Xylole, Ethylbenzol, Styrol, Cumol). Die TMB zählen nicht zu den BTEX und werden in der Bewertung nach /3/ ausgeklammert.

Die Prüfwerte bzw. GFS-Werte für BTEX und Benzol sowie für PAK und Naphthalin werden unterschritten.

6 Gefährdungsabschätzung

Durch die Untersuchungen konnte die AKW-Verunreinigung im Bereich von RKS 13 lateral sowie vertikal eingegrenzt werden. Aromatische Kohlenwasserstoffe (AKW) wurden in den Bodenproben, trotz geruchlicher Auffälligkeiten, nur in geringen Gehalten festgestellt. An die anthropogene Auffüllung gebundene PAK wurden nach wie vor nachgewiesen (Ergebnisplan siehe Anlage 1b).

6.1 Wirkungspfad Boden – Mensch

Eine Gefährdung des Schutzgutes Mensch ist nach wie vor nicht zu besorgen. Die in /4/ angegebenen Orientierungswerte für flüchtige Stoffe in der Bodenluft werden deutlich unterschritten.

6.2 Wirkungspfad Boden – Grundwasser

Die an der Probe RKS 22 (0,3-0,9 m) durchgeführten Eluatuntersuchungen lieferten in Bezug auf Anhang 2 des Leitfadens Untersuchungsstrategie Grundwasser /3/ Ergebnisse, die die jeweiligen Prüfwerte unterschreiten.

Im Grundwasser werden die Prüfwerte bzw. GFS-Werte für BTEX (gem. Fußnote 3, Anhang 2 in /3/ ohne TMB) und Benzol sowie für PAK und Naphthalin ebenso unterschritten. Da die AKW-Konzentrationen (BTEX nach /3/ inkl. TMB) Prüf- und GFS-Wert ebenso un-

terschreiten, ist auch seitens der gemessenen TMB-Konzentrationen von keiner Gefährdung auszugehen.

Am Ort der Beurteilung, dem Übergang vom Sickerwasser ins Grundwasser, ist somit für den untersuchten Geländebereich (verunreinigter Bereich um den Erkundungspunkt RKS 13) von keiner Überschreitung der Grenzwerte für die untersuchten Parameter gemäß Bundesbodenschutzverordnung auszugehen.

7 Handlungsbedarf

Ein aktueller Handlungsbedarf ist im Bereich der RKS 13 aus umweltrechtlicher Sich nicht gegeben. Eine Gefährdung der Schutzgüter Mensch und Grundwasser ist aus den Untersuchungsergebnissen nicht abzuleiten.

Aus fachlicher Sicht wird weiterhin empfohlen, die Belastung des Bodens nach Abbruch der aufstehenden Gebäude zu überprüfen und das Material entsprechend zu beseitigen.

8 Schlussbemerkung

Die vorliegenden Ergebnisse geben eine aktuelle, jedoch auf die Untersuchungspunkte beschränkte Zustandsbeschreibung des Untergrunds wieder. Sämtliche Aussagen, Empfehlungen und Bewertungen basieren ausschließlich auf dem in diesem Bericht beschriebenen Erkundungsrahmen und den hierbei gewonnenen Erkenntnissen sowie den aktuellen gesetzlichen Rahmenbedingungen. Aussagen über eventuelle Verunreinigungen der Bodenzone außerhalb der im Rahmen des Auftrags untersuchten Verdachtsbereiche können nicht getroffen werden.

zwigl geoconsult Karlsruhe, 29. Januar 2016

Dipl.-Geol. Judith Zwigl

Anlage 1: Ergebnisplan

Plangrundlage: Bebauungsplan2011_zeichnerischerTeil

Legende:

- Rammkernsondierung Dez. 2015
- Rammkernsondierung, Ausbau zur temporären GWM
- Rammkernsondierung, Ausbau zur Bodenluftmessstelle
- Rammkernsondierung Aug. 2015
- Lokale AKW-Verunreinigung RKS 13

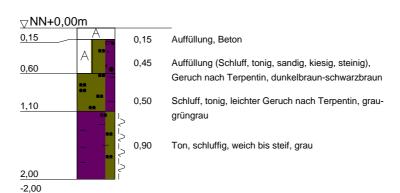
ZWIGLGECCONSULT

PROJEKT:

Kurzbericht zur umwelttechnischen Detailuntersuchung

Alte Mühle Flehingen Gochsheimer Str. 101, 75038 Oberderdingen-Flehingen

ANLAGE:


Anlage 1: Ergebnisplan

Projekt-Nr.: 1154-2		Datum	Zeichen
Maßstab: siehe Maßstabsbalken	bearbeitet:	29.01.2016	JZ
Datum: 29.01.2016	geprüft:		

zwigl geoconsult Zeppelinstr. 2 76185 Karlsruhe

info@zwigl-geoconsult.com

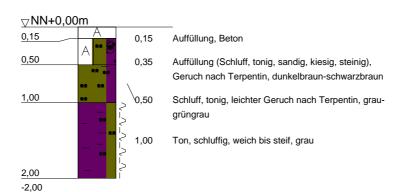
Kurzbericht zur umwelttechnis Alte Mühle Flehingen, Gochsl		
	, , , , , , , , , , , , , , , , , , ,	
	Anlage 2:	Bohrprofile / Probenahmeprotokoll

Geotechnische Dienstleistungen Boden / Grundwasser / Altlasten

Hauptstr. 80 75248 Ölbronn-Dürrn Tel. 7237 / 442 97-90 Fax 07237 / 442 97-91 Bauvorhaben:

OU Alte Mühle Flehingen Gochsheimerstrasse 101 Flehingen

Auftraggeber ZWIGL GEOCONSULT Zeppelinstr. 2 76185 Karlsruhe Anlage


Projekt-Nr:

Datum: 21.12.2015

Maßstab: 1:50

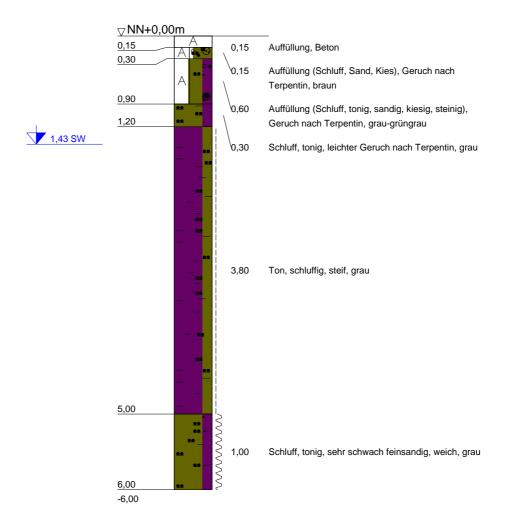
Bearbeiter: MF

Copyright © 1994-2011 IDAT GmbH - C:\Users\User\Terraq GmbH\Kunden\Zwig\\projekte\AMF\AMF 21122015.bop

Geotechnische Dienstleistungen Boden / Grundwasser / Altlasten

Hauptstr. 80 75248 Ölbronn-Dürrn Tel. 7237 / 442 97-90 Fax 07237 / 442 97-91 Bauvorhaben:

OU Alte Mühle Flehingen Gochsheimerstrasse 101 Flehingen


Auftraggeber ZWIGL GEOCONSULT Zeppelinstr. 2 76185 Karlsruhe Anlage

Projekt-Nr:

Datum: 21.12.2015

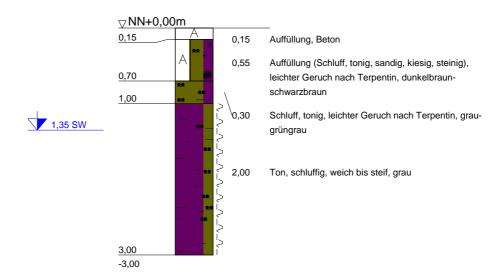
Maßstab: 1:50

Bearbeiter: MF

Geotechnische Dienstleistungen Boden / Grundwasser / Altlasten

Hauptstr. 80 75248 Ölbronn-Dürrn Tel. 7237 / 442 97-90 Fax 07237 / 442 97-91 Bauvorhaben:

OU Alte Mühle Flehingen Gochsheimerstrasse 101 Flehingen


Auftraggeber ZWIGL GEOCONSULT Zeppelinstr. 2 76185 Karlsruhe Anlage

Projekt-Nr:

Datum: 21.12.2015

Maßstab: 1:50

Bearbeiter: MF

Geotechnische Dienstleistungen Boden / Grundwasser / Altlasten

Hauptstr. 80 75248 Ölbronn-Dürrn Tel. 7237 / 442 97-90 Fax 07237 / 442 97-91 Bauvorhaben:

OU Alte Mühle Flehingen Gochsheimerstrasse 101 Flehingen

Auftraggeber ZWIGL GEOCONSULT Zeppelinstr. 2 76185 Karlsruhe Anlage

Projekt-Nr:

Datum: 21.12.2015

Maßstab: 1:50

Bearbeiter: MF

Copyright © 1994-2011 IDAT GmbH - C:\Users\User\Terraq GmbH\Kunden\Zwig\\projekte\AMF\AMF 21122015.bop

A.2 Probennahmeprotokoll

Probennehmende	Stell Bro		or-Bearbeitun		inawa	Untersuchung		nel/Etikett/	out hiera	einirlahan)
	ronn-Dürrn					Onter Such toring	_		rgi. mer e	ankieben)
Foobereath Addition	90 · Fax 4429791 EHR	Flas	chen(satz) - N	Nummer			Sync	م		
GW-Nr.:	1 1 1		J - L	MstBeze	eichnung:	Rus	22	AHF		
Probennahme	ezeitpunkt: 2	Tag Monat	2015	1105	1		74			
Anlass der Pro	obennahme:	T moi	oiles Entnah	nmegerāt.	0,3 3					
Art der Prober	nahme:	2 2 mot	oile Entnahr	meleitung:	-					
Ruhewassersp	piegel:	L	(14) m	o 5) Messp.		Bezeichnung z. B. OK = Ober		ktes – vgl. I	viessstelk	en-Info!
Sohltiefe		S	100 m	Si Messp.		60k				
Wasserspiege	l bei Entnahme.	L	1 × m	O ⁵⁾ Messn			von Förderstro		schüttung	F
Tiefenlage de	mobilen Pump		CISO m			Messung 1	V [Liter]	t [sec]	Q (l/s	ec]
Pumndauer	or Probennahme		m/m	Dauerbeti	x-a-s	2				
						3				
Förderstrom b	eim Abpumpen			111016	8 1/se	oder [T night for	ststellbar.		
oder	Abpumpvolun				L L m²	_ 00B		gabe bei E		ungen
Untersuchur	tatsächlich abge ngen bei der F	pumptes Volu	men, vgl. Hinwels	e auf Rückseite						
Farbe:	Serr per der L	Topelin	ainne.		wasser	werksseitige A	ufbereitung v	or Probenn	ahme?	
	3114	4			pH-W	ert bei:	1345	J°C ∣	619	6
Trübung:	Sch	4466			Sauce	rstoff:		1 .	19.	
Geruch:	TIRV	Belat	المارا	Loding					14	mg/l
Bodensatz	SICKE	9996			Saue	rstoffsättigu	ngsindex:		14	0 %
Temperatur:			1315 %	С	Base	kap. bis pH	8,2:]°C L		mmol
El. Leitfähigke	it bei 20°C:		1988 p	S/cm	Base	kap. bis pH	4,3: 4	J°C L	141	mmo
Verlauf von Le	eitparametern be	eim Abpur	mpen, PN-Ve	orgaben sind:	zu beachte	n!		Pumpbe	ginn:	n mi
Parameter	bei Pumpbeginn	5 min	10 min	15 min	min	min	mi	n	min	min
El LF (µS/cm)										
Temp.[°C]										
				* Page	& Cary	c sec	It was	1, 0	or P	d
	-		-	2 .	(and a del	ungl	- '		
Mängel, probl	chme erfolgte i rläuterungen in ematischer Zug	die MstIr ang,) s	nfo. Sonstig owie zur Pr	ge Angaben z obennahme (ur Mess- c	der ProMens	JA hahmestelle	(defekt,	NEI/ baulich	N 1
	n (zur Erfassung ir		max. 80 Zeich	ien):		(JE	RRAG		bH	
Flaling	a. 21.12	.2011				752	Haupte 48 Ölbi	onn-Di	irrn	
Ort, Datum:					Unterann	rift Prolien				

Anlage 3: Prüfberichte

görtler analytical services gmbh 🥥 Joh.-Seb.-Bach-Str. 40 💪 D-85591 Vaterstetten

zwigl geoconsult Zeppelinstraße 2 D-76185 Karlsruhe

Prüfbericht V168119

12.01.2016

Projekt Alte Mühle Flehingen

Auftraggeber zwigl geoconsult

Auftragsdatum 21.12.2015

Probenart Feststoff, Bodenluft

Probenahme 21.12.2015

Probenehmer Judith Zwigl

Probeneingang 11.01.2016

Prüfzeitraum 11.01.2016 - 12.01.2016

DAKKS

Deutsche
Akkreditierungsstelle
D-PL-14282-01-00

O Umweltanalytik

Company Lebensmittelanalytik

Futtermittelanalytik

Rückstandsanalytik

6 RoHS-Analytik

Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV/SAL-BY-G069.02.07)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn Kto. 664 448 BLZ 701 694 02 IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse

München Starnberg Ebersberg Kto. 274 168 82 BLZ 702 501 50 IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

Vaterstetten Innsbruck São Paulo

görtler analytical services gmbh

B.Sc.Tobias Wegner Labororganisation

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

Prüfbericht 12.01.2016

V168119

Feststoff

Probenbezeichnung				RKS 20 0,60-1,1 m	RKS 21 0,50-1,0 m	RKS 22 0,30-0,8 m
Probenahme durch Probenahme am				Judith Zwigl 21.12.2015	Judith Zwigl 21.12.2015	Judith Zwigl 21.12.2015
Probeneingang				11.01.2016	11.01.2016	11.01.2016
Anliefergefäß				Glas	Glas	Glas
Parameter	Methode	BG	Einheit	V1634013	V1634014	V1634015
Probenaufbereitung			-	Frakt. < 2	Frakt. < 2	Frakt. < 2
Fraktion < 2 mm	DIN ISO 11464	0,1	%	83,4	80,2	61,0
Trockenrückstand (TR)	DIN ISO 11465	0,1	%	78,3	80,8	80,3
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):						
Benzol	DIN ISO 22155	5	μg/kg TR	< 5,0	11	52
Toluol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	< 5,0
Ethylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	8,7
Xylole (Summe m, p)	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	72
o-Xylol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	65
Styrol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	< 5,0
iso-Propylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	12
1,3,5-Trimethylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	18	421
Summe AKW	DIN ISO 22155		μg/kg TR	n.n.	29	630
Polycyclische aromatische Kohlenwasserstoffe (PAK):						
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	0,46	14
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	0,01	0,04
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	0,07	0,45
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	0,20
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	1,0
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,03	0,05	0,79
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	0,82
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	0,02	0,78
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	1,0
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	0,46
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	2,1
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	0,59
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	0,03	0,61	22

V168119

Feststoff

Probenbezeichnung				RKS 22 2,0-3,0 m	RKS 23 0,70-0,1m
Probenahme durch				Judith Zwigl	Judith Zwigl
Probenahme am				21.12.2015	21.12.2015
Probeneingang				11.01.2016	11.01.2016
Anliefergefäß				Glas	Glas
Parameter	Methode	BG	Einheit	V1634016	V1634017
Probenaufbereitung			-	Frakt. < 2	Frakt. < 2
Fraktion < 2 mm	DIN ISO 11464	0,1	%	80,7	86,6
Trockenrückstand (TR)	DIN ISO 11465	0,1	%	75,0	76,3
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):					
Benzol	DIN ISO 22155	5	μg/kg TR	< 5,0	6,9
Toluol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0
Ethylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0
Xylole (Summe m, p)	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0
o-Xylol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0
Styrol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0
iso-Propylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0
1,3,5-Trimethylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	46
Summe AKW	DIN ISO 22155		μg/kg TR	n.n.	53
Polycyclische aromatische Kohlenwasserstoffe (PAK):					
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR		2,7
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR		0,06
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR		0,06
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		0,02
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		0,04
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR		< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR		2,9

Prüfbericht 12.01.2016

V168119

Bodenluft (Entnahmevolumen 2L)

Probenbezeichnung				RKS 21
Probenahme durch				Judith Zwigl
Probenahme am				21.12.2015
Probeneingang				11.01.2016
Anliefergefäß				AKR
Parameter	Methode	BG	Einheit	V1634018
Probenahmevolumen			L	2
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):				
Benzol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	1,5
Toluol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	< 0,30
Ethylbenzol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	< 0,30
Xylole (Summe m, p)	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	1,2
o-Xylol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	0,48
Styrol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	< 0,30
iso-Propylbenzol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	< 0,30
1,3,5-Trimethylbenzol	GC/MS, Aktivkohleröhrchen	0,3	mg/m³	2,3
Summe AKW	GC/MS, Aktivkohleröhrchen		mg/m³	5,5

görtler analytical services gmbh 🧔 Joh.-Seb.-Bach-Str. 40 🧔 D-85591 Vaterstetten

zwigl geoconsult Zeppelinstraße 2 D-76185 Karlsruhe

Prüfbericht V168120

Projekt Alte Mühle Flehingen

Auftraggeber zwigl geoconsult

Auftragsdatum 21.12.2015

Probenart Feststoff

Probenahme 21.12.2015

Probenehmer Judith Zwigl

Probeneingang 11.01.2016

Prüfzeitraum 11.01.2016 - 12.01.2016

görtler analytical services gmbh

B.Sc.Tobias Wegner Labororganisation

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

Deutsche

12.01.2016

Akkreditierungsstelle D-PL-14282-01-00

O Umweltanalytik

Lebensmittelanalytik Futtermittelanalytik

6 Rückstandsanalytik

© RoHS-Analytik

Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV/SAL-BY-G069.02.07)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung: Giesa Warthemann, Roland Görtler

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn Kto. 664 448 BLZ 701 694 02 IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse

München Starnberg Ebersberg Kto. 274 168 82 BLZ 702 501 50 IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

Vaterstetten Innsbruck São Paulo

V168120

Gortler® analytical services

Feststoff

Probenbezeichnung				RKS 20 0,15-0,6 m	RKS 21 0,15-0,5 m	RKS 23 0,15-0,7 m
Probenahme durch				Judith Zwigl	Judith Zwigl	Judith Zwigl
Probenahme am				21.12.2015	21.12.2015	21.12.2015
Probeneingang				11.01.2016	11.01.2016	11.01.2016
Anliefergefäß				Glas	Glas	Glas
Parameter	Methode	BG	Einheit	V1634019	V1634020	V1634021
Probenaufbereitung			-	Frakt. < 2	Frakt. < 2	Frakt. < 2
Fraktion < 2 mm	DIN ISO 11464	0,1	%	81,2	83,2	79,0
Trockenrückstand (TR)	DIN ISO 11465	0,1	%	77,7	81,7	78,9
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):						
Benzol	DIN ISO 22155	5	μg/kg TR	8	14	12
Toluol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	< 5,0
Ethylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	5,0
Xylole (Summe m, p)	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	< 5,0
o-Xylol	DIN ISO 22155	5	μg/kg TR	< 5,0	19	19
Styrol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	< 5,0
iso-Propylbenzol	DIN ISO 22155	5	μg/kg TR	< 5,0	< 5,0	< 5,0
1,3,5-Trimethylbenzol	DIN ISO 22155	5	μg/kg TR	18	54	31
Summe AKW	DIN ISO 22155		μg/kg TR	26	87	67
Polycyclische aromatische Kohlenwasserstoffe (PAK):						
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	2,21	0,85	4,0
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	0,01	0,01
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	0,09	0,01
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	0,02
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,07	0,1	< 0,01
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02	0,15	0,16
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01	< 0,01	< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	2,3	1,2	4,2

Legende: Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt

görtler analytical services gmbh 🧔 Joh.-Seb.-Bach-Str. 40 💪 D-85591 Vaterstetten

zwigl geoconsult Zeppelinstraße 2 D-76185 Karlsruhe

Prüfbericht V168131

Projekt Alte Mühle Flehingen

Auftraggeber zwigl geoconsult

Auftragsdatum 13.01.2016

Probenart Feststoff

Probenahme 21.12.2015

Probenehmer Judith Zwigl

Probeneingang 11.01.2016

Prüfzeitraum 11.01.2016 - 20.01.2016

görtler

analytical/services gmbh

& warshing

Dr. Bruno Schwarzkopf Mitarbeiter QM

Die Prüfbefunde beziehen sich ausschließlich auf die Prüfgegenstände. Die auszugsweise Vervielfältigung des Prüfberichts ist ohne schriftliche Genehmigung der görtler analytical services gmbh nicht zulässig. Untersuchungsstelle ist die görtler analytical services gmbh, D-85591 Vaterstetten.

Wenn nicht anders vereinbart oder fachlich begründet, werden Proben 2 Monate aufbewahrt.

20.01.2016

O Umweltanalytik

Lebensmittelanalytik

6 Futtermittelanalytik

Rückstandsanalytik

RoHS-Analytik

Analytik von Arzneimitteln und pharmazeutischen Produkten

Akkreditiertes Prüflaboratorium DIN EN ISO/IEC 17025:2005

Gegenprobensachverständigen-Prüflabor (PrüfLabV/SAL-BY-G069.02.07)

Zulassung nach dem Arzneimittelgesetz

Untersuchungsstelle nach § 15 TrinkwV: 2001 und § 18 BBodSchG

görtler analytical services gmbh

Johann-Sebastian-Bach-Straße 40 D-85591 Vaterstetten

Telefon +49 8106 2460-0 Telefax +49 8106 2460-60 info@goertler.com www.goertler.com

Geschäftsführung:

Giesa Warthemann, Roland Görtler HRB München 93447

HRB München 93447 USt.-IdNr. DE 129 360 902 St.Nr. 114/127/60117

Raiffeisenbank Ottobrunn Kto. 664 448 BLZ 701 694 02 IBAN: DE31 7016 9402 0000 6644 48 BIC: GENODEF1HHK

Kreissparkasse

München Starnberg Ebersberg Kto. 274 168 82 BLZ 702 501 50 IBAN: DE39 7025 0150 0027 4168 82 BIC: BYLADEM1KMS

Prüfbericht 20.01.2016

V168131

Feststoff

Probenbezeichnung				RKS 22 0,8-1,2 m
Probenahme durch				Judith Zwigl
Probenahme am				21.12.2015
Probeneingang				11.01.2016
Anliefergefäß				Glas
Parameter	Methode	BG	Einheit	V1600080
Probenaufbereitung			-	Frakt. < 2
Fraktion < 2 mm	DIN ISO 11464	0,1	%	61,9
Trockenrückstand (TR)	DIN ISO 11465	0,1	%	78,2
Polycyclische aromatische Kohlenwasserstoffe (PAK):				
Naphthalin	DIN ISO 18287, GC-MS	0,01	mg/kg TR	19
Acenaphthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02
Acenaphthylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Fluoren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02
Phenanthren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,06
Anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02
Fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,07
Pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,06
Benzo(a)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,03
Chrysen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02
Benzo(b)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,03
Benzo(k)fluoranthen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	0,02
Benzo(a)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Dibenzo(a,h)anthracen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Benzo(g,h,i)perylen	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Indeno(1,2,3-cd)pyren	DIN ISO 18287, GC-MS	0,01	mg/kg TR	< 0,01
Summe PAK (EPA)	DIN ISO 18287, GC-MS		mg/kg TR	19,3

Eluat

Probenbezeichnung				RKS 22 0,30-0,8 m
Probenahme durch				Judith Zwigl
Probenahme am				21.12.2015
Probeneingang				11.01.2016
Anliefergefäß				Glas
Parameter	Methode	BG	Einheit	V1634015
Eluatherstellung	DIN EN 12457-4		-	Originalprobe
pH-Wert (20 °C)	DIN 38404-C5, elektrometrisch		-	7,8
el. Leitfähigkeit (25 °C)	DIN EN 27888 (C8), elektrometrisch	0,1	μS/cm	175
Leichtflüchtige aromatische Kohlenwasserstoffe (AKW):				
Benzol	DIN 38407-F9, GC/MS	0,5	μg/L	0,5
Toluol	DIN 38407-F9, GC/MS	0,5	μg/L	< 0,50
Ethylbenzol	DIN 38407-F9, GC/MS	0,5	μg/L	1,0
Xylole (Summe m, p)	DIN 38407-F9, GC/MS	0,5	μg/L	3,8
o-Xylol	DIN 38407-F9, GC/MS	0,5	μg/L	3,5
Styrol	DIN 38407-F9, GC/MS	0,5	μg/L	< 0,50
iso-Propylbenzol	DIN 38407-F9, GC/MS	0,5	μg/L	1,4
1,3,5-Trimethylbenzol	DIN 38407-F9, GC/MS	0,5	μg/L	8
Summe AKW	DIN 38407-F9, GC/MS		μg/L	18,2
Polycyclische aromatische Kohlenwasserstoffe (PAK):				
Naphthalin	DIN EN 15527, GC-MS	0,01	μg/L	1,5
Acenaphthen	DIN EN 15527, GC-MS	0,01	μg/L	0,04
Acenaphthylen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Fluoren	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Phenanthren	DIN EN 15527, GC-MS	0,01	μg/L	0,08
Anthracen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Fluoranthen	DIN EN 15527, GC-MS	0,01	μg/L	0,01
Pyren	DIN EN 15527, GC-MS	0,01	μg/L	0,02
Benzo(a)anthracen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Chrysen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Benzo(b)fluoranthen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Benzo(k)fluoranthen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Benzo(a)pyren	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Dibenzo(a,h)anthracen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Benzo(g,h,i)perylen	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01
Indeno(1,2,3-cd)pyren	DIN EN 15527, GC-MS	0,01	μg/L	< 0,01

Prüfbericht

V168131

20.01.2016

Eluat

Probenbezeichnung				RKS 22 0,30-0,8 m
Probenahme durch				Judith Zwigl
Probenahme am				21.12.2015
Probeneingang				11.01.2016
Anliefergefäß				Glas
Parameter	Methode	BG	Einheit	V1634015
Summe PAK (EPA)	DIN EN 15527, GC-MS		μg/L	1,61

Legende

Komponenten unter der Bestimmungsgrenze (BG) wurden bei der Summenbildung nicht berücksichtigt (Summen gerundet) n.n. = nicht nachweisbar; n.b. = nicht beauftragt

Retsch = Befunde aus der gebrochenen Originalprobe (Probenaufbereitung mit Backenbrecher RETSCH) Fraktion = Befunde aus der Fraktion < 2 mm

Frakt. < 22,4 = Befunde aus der gebrochenen Fraktion < 22,4 mm bzw. Eluatansatz aus der Fraktion < 22,4 mm grob gebrochen = Eluatansatz aus der grob gebrochenen Originalprobe
Originalprobe = Befunde bzw. Eluatansatz aus der Originalprobe
zerkleinert = Befunde bzw. Eluatansatz aus der zerkleinerten Originalprobe

gemahlen = Befunde aus der gemahlenen Originalprobe

synlab Umweltinstitut GmbH - Otto-Hahn-Straße 18 - 76275 Ettlingen

zwigl geoconsult Frau Judith Zwigl Zeppelinstr. 2 76185 Karlsruhe

Niederlassung Ettlingen

Telefon: +49 (0)7243 939-1288
Telefax: +49 (0)821 22780-604
E-Mail: sui-ettlingen@synlab.com
Internet: www.synlab.de

Seite 1 von 2

Datum: 11.01.2016

Prüfbericht Nr.: UET-15-0123069/01-1

Auftrag-Nr.: UET-15-0123069

Ihr Auftrag: schriftlich vom 22.12.2015
Projekt: 1154-2 - Alte Mühle Flehingen

Eingangsdatum: 22.12.2015

Probenahme durch: Auftraggeber / Fr. Zwigl

Probenahmedatum: 21.12.2015

Prüfzeitraum: 22.12.2015 - 04.01.2016

Probenart: Grundwasser

Deutsche
Akkreditierungsstelle
D-PL-14004-01-01
D-PL-14004-01-02
D-PL-14004-01-03
D-PL-14004-01-04
D-PL-14004-01-05

Prüfbericht Nr.

UET-15-0123069/01-1

Seite 2 von 2

 Probenbezeichnung:
 1154-2 - RKS 23

 Probe Nr.
 UET-15-0123069-01

Laboruntersuchungen

Aromatische Kohlenwasserstoffe

Parameter	Einheit	Messwert	Verfahren
Benzol	μg/l	0,7	DIN 38 407-F 9 (UAU)
Toluol	μg/l	<0,5	DIN 38 407-F 9 (UAU)
Ethylbenzol	μg/l	0,5	DIN 38 407-F 9 (UAU)
m,p-Xylol	μg/l	0,9	DIN 38 407-F 9 (UAU)
o-Xylol	μg/l	2,1	DIN 38 407-F 9 (UAU)
Styrol	μg/l	<0,5	DIN 38 407-F 9 (UAU)
Isopropylbenzol (Cumol)	μg/l	<0,5	DIN 38 407-F 9 (UAU)
1,2,3-Trimethylbenzol	μg/l	2,7	DIN 38 407-F 9 (UAU)
1,2,4-Trimethylbenzol	μg/l	3,9	DIN 38 407-F 9 (UAU)
1,3,5-Trimethylbenzol	μg/l	8,9	DIN 38 407-F 9 (UAU)
Summe AKW	μg/l	19,7	DIN 38 407-F 9 (UAU)

Polycyclische aromatische Kohlenwasserstoffe

Parameter	Einheit	Messwert	Verfahren
Naphthalin	μg/l	1,1	DIN 38407-F39 (UAU)
Acenaphthylen	μg/l	0,02	DIN 38407-F39 (UAU)
Acenaphthen	μg/l	<0,01	DIN 38407-F39 (UAU)
Fluoren	μg/l	0,1	DIN 38407-F39 (UAU)
Phenanthren	μg/l	0,02	DIN 38407-F39 (UAU)
Anthracen	μg/l	<0,01	DIN 38407-F39 (UAU)
Fluoranthen	μg/l	<0,01	DIN 38407-F39 (UAU)
Pyren	μg/l	0,02	DIN 38407-F39 (UAU)
Benzo(a)anthracen	μg/l	<0,01	DIN 38407-F39 (UAU)
Chrysen	μg/l	<0,01	DIN 38407-F39 (UAU)
Benzo(b)fluoranthen	μg/l	<0,01	DIN 38407-F39 (UAU)
Benzo(k)fluoranthen	μg/l	<0,01	DIN 38407-F39 (UAU)
Benzo(a)pyren	μg/l	<0,01	DIN 38407-F39 (UAU)
Dibenz(a,h)anthracen	μg/l	<0,01	DIN 38407-F39 (UAU)
Benzo(g,h,i)perylen	μg/l	<0,01	DIN 38407-F39 (UAU)
Indeno(1,2,3-cd)pyren	μg/l	<0,01	DIN 38407-F39 (UAU)
Summe PAK (16)	μg/l	1,26	DIN 38407-F39 (UAU)

(UAU) - Niederlassung Augsburg

Eine auszugsweise Veröffentlichung bedarf der schriftlichen Zustimmung der synlab Umweltinstitut GmbH. Die Prüfergebnisse beziehen sich ausschließlich auf die im Prüfbericht spezifizierten Prüfgegenstände (DIN EN ISO/IEC 17025).

Dr.,Michael Jarmer Niederlassungsleiter

Anlage 4: Fotodokumentation

Bild 1: Lage der RKS 13 aus der Erkundungsphase August 2015